Robust In-Car Speech Recognition Based on Nonlinear Multiple Regressions
نویسندگان
چکیده
We address issues for improving handsfree speech recognition performance in different car environments using a single distant microphone. In this paper, we propose a nonlinear multiple-regression-based enhancement method for in-car speech recognition. In order to develop a data-driven in-car recognition system, we develop an effective algorithm for adapting the regression parameters to different driving conditions. We also devise the model compensation scheme by synthesizing the training data using the optimal regression parameters and by selecting the optimal HMM for the test speech. Based on isolated word recognition experiments conducted in 15 real car environments, the proposed adaptive regression approach shows an advantage in average relative word error rate (WER) reductions of 52.5% and 14.8%, compared to original noisy speech and ETSI advanced front end, respectively.
منابع مشابه
Optimizing regression for in-car speech recognition using multiple distributed microphones
In this paper, we address issues in improving handsfree speech recognition performance in different car environments using multiple spatially distributed microphones. In previous work, we proposed multiple regression of the log-spectra (MRLS) for estimating the logspectra of speech at a close-talking microphone. In this paper, the idea is extended to nonlinear regressions. Isolated word recogni...
متن کاملPersian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods
Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...
متن کاملAn Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition
Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...
متن کاملSingle-Channel Multiple Regression for In-Car Speech Enhancement
We address issues for improving hands-free speech enhancement and speech recognition performance in different car environments using a single distant microphone. This paper describes a new singlechannel in-car speech enhancement method that estimates the log spectra of speech at a close-talking microphone based on the nonlinear regression of the log spectra of noisy signal captured by a distant...
متن کاملروشی جدید در بازشناسی مقاوم گفتار مبتنی بر دادگان مفقود با استفاده از شبکه عصبی دوسویه
Performance of speech recognition systems is greatly reduced when speech corrupted by noise. One common method for robust speech recognition systems is missing feature methods. In this way, the components in time - frequency representation of signal (Spectrogram) that present low signal to noise ratio (SNR), are tagged as missing and deleted then replaced by remained components and statistical ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2007 شماره
صفحات -
تاریخ انتشار 2007